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1 Introduction

Envoy is an work-in-progress and experimental Bounding Volume Hierar-
chies (BVH) backend for renderers, with relatively heavy engineering effort.

As an introduction, BVH is motivated by the property that, if a ray do not in-
tersects with some triangles’ bounding volume, exact ray-triangle intersec-
tion can be mitigated. By dichotomy on space, we can construct a hierarchy
of bounding volumes, where bounding volumes contain other sub-volume
recursively. This hierarchy serves as a tree like accelerating data-structure,
which is quite common in Computer Graphics. For data-structure like this,
the whole algorithm is separated into two phases, construction phase and
intersecting phase. Specific information of BVH will be introduced later.
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In real scenarios, to build an offline renderer, the construction phase can be
slow. We can even endure an relatively long tree optimization process, e.g.,
tree balancing, triangle split or rearrange. But the intersecting phase must
be fast. Or to say, the tree traversal and ray-triangle intersection must
be efficient. However, in real-time renderer, between frames, we reconstruct
our trees because objects can be moving. In modern GPU-pipeline, this op-
eration should be executed purely on GPU for performance and coherency.
Ray-triangle intersection can be trivially ported to GPU, but tree construction
does not. See table 1 for more information.

Construction Intersection
Offline Renderer Tree quality, Reasonable

performance, On CPU
High-performance,
Inherently parallel

Real-time Renderer Can sacrifice tree qual-
ity, but parallel on GPU

Reasonable perfor-
mance on CPU and
GPU, Inherently parallel

Table 1: Requirements for BVH on different scenarios.

Our target (currently in this Parallel Computing Final Project) is to imple-
ment Karras’s paper [5] with SIMD ray-triangle intersection in Plucker Co-
ordinates on CPU, which trained me to build parallel math libraries in the
renderer, I’ll discuss about this later.

Temporary Note: The project is alreadyWIP in its GitHub
repository. Because I hadCOVID-19 just in final-examweek,
time constraints preventme from fulfilling all my initial com-
mitments. This project will be continued.

2 Background

In this section, I’ll briefly introduce BVH’s implementation detail, existing
works and further improvement in this project.

Let’s demonstrate this process with fig. 1. This outdoor scene contains ap-
proximately 3.1 billion triangles. We hope to proceed as little triangles as
possible. In traditional rasterization-based renderer, only the triangleswithin
the view frustum are needed to render a complete scene. So there is a culling
process, on both CPU and GPU in modern renderer pipeline. However, in
our case, when the interface is

Intersect : R3 → R3︸    ︷︷    ︸
ray

→ intersectable︸         ︷︷         ︸
△/⃝/□/···

→ intersection

Where intersection is a tuple that might contain information like normal, uv
in R2 and position, etc. The easiest way is to traverse all triangles, since
Triangle also provides this interface.

However, a desired way is to traverse on a structure like fig. 2, where ob-
jects(primitives) are arranged in a tree-like way. The only requirement of
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Figure 1: Complex realistic outdoor landscape scene from Physically Based
Rendering book.

(a) Spatial split. (b) Tree structure.

Figure 2: A demonstration of BVH. Figure adopted from PBRT.

these objects is that they implements the Intersect function, i.e., they are
intersectable. So a BVH itself can also be embed into another BVHs.

The BVH traversal process is demonstrated in algorithm 1, note that this
process should be extensively optimized.

Some questions are left here. How is this hierarchy constructed, and how
are the triangles intersected, i.e., what’s the implementation of Intersect.
These questions will be answered in the following two sections.

3 Parallel Details

3.1 SIMD Math Library

As I mentioned before, if we implement the ray-triangle intersection process
in CUDA, with appropriate memory layout, i.e., SoA, SIMD is automatically
enabled. This indicates that, we don’t have to rewrite code for SIMD, the
original code is expressive enough.

To accomplish this, we havemultiple ways. One is ispc compiler [10], which
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Algorithm 1 BVH Tree traversal.
function BvhTreeTraversal(𝑟𝑜𝑜𝑡 , 𝑟𝑎𝑦)

return empty if 𝑟𝑜𝑜𝑡 is empty
□← getBoundingBox(𝑟𝑜𝑜𝑡 )
△ ← getTriangles(𝑟𝑜𝑜𝑡 ) ⊲ read properties from node
if Intersect(𝑟𝑎𝑦, □) then

if 𝑟𝑜𝑜𝑡 is leaf then
return Intersect(𝑟𝑎𝑦, △)

else
return BvhTreeTraversal(left(𝑟𝑜𝑜𝑡 ), 𝑟𝑎𝑦)

| BvhTreeTraversal(right(𝑟𝑜𝑜𝑡 ), 𝑟𝑎𝑦)
⊲ merge the results from left right sub-tree

end if
end if

end function

provide a C-like language for SPMD programming and structure design. The
reason that I did not use ispc is that its intrusive. A shader-like language
will break the abstraction, and is more suitable for writing execution kernels,
handling tasks in a pipeline. CUDA is great, but I’m writing CPU code.

Anyway, this is a Math Library problem, and can be solved using new
compilers or powerful math library. Another way is to imitate enoki, which
is the math backend of Mitsuba Renderer 2 [9]. We currently neglect its
autodiff feature (which also relies on math library), focusing on its auto-
vectorization design.

Mitsuba Renderer 2’s implementation relies on C++ template, adding the
primitive type, e.g., Float as a template parameter. In theory, method call
to Array should perform the same as to its items. Suppose we define dot
product function dot on two vec3, i.e., dot(a: vec3, b: vec3). Then
for dot product on two Array<vec3, 8>, the original dot product should be
executed element-wise, which is a transformation from

dot : 𝑣𝑒𝑐3⟨R⟩ → 𝑣𝑒𝑐3⟨R⟩ → R

to

dot : ∀𝑛 ∈ N, 𝑎𝑟𝑟𝑎𝑦⟨𝑣𝑒𝑐3⟨R⟩, 𝑛⟩ → 𝑎𝑟𝑟𝑎𝑦⟨𝑣𝑒𝑐3⟨R⟩, 𝑛⟩ → 𝑎𝑟𝑟𝑎𝑦⟨R, 𝑛⟩

where 𝑣𝑒𝑐3⟨R⟩ should be rearrange into SoA in 𝑎𝑟𝑟𝑎𝑦.

This imposes a harsh requirement, every component in function parameters
should be able to convert into SoA form with a template parameter for effi-
cient calculation, which prohibits us from using external library in core part
of the project that doesn’t support this operation. However in later parts,
this abstraction can be preserved by not using SoA. In our case, we are not
building a complete renderer from scratch, but a self-contained math library
is needed. Embree [11] has an implementation of this type of math library.

In our case, we used xtensor-stack/xsimd as our SIMD backend (although
I think Enoki is more well-designed). In renderer, all the calls should not
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be in member-function-call form, which affects the compatibility. When we
want to migrate from glm to Eigen, this is convenient (however, we have
to implement all these math functions with some are already provided by
xsimd). With all these complex preparations, I implement the ray-triangle
intersection in src/intersector.h.

There is more to discuss about in SIMD. Previously we assume that only
triangles can be packed in a SIMD fashion, but so do rays. We’ll not discuss
about this here.

3.2 Parallelism in the Construction of BVH

This part is based on Karras’s paper [5]. Which core lies in converting a
sorted array into a tree in 𝑂 (𝑛 log𝑛) and 𝑂 (log𝑛) time. Methods based on
converting BVHs into sorted arrays and then build tree structures are called
linear BVHs[7] (LBVH). But first, let me answer the question, how is the tree
built with pseudo-code here algorithm 2.

Algorithm 2 BVH Tree build.
function BvhTreeBuild(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 , 𝑑𝑒𝑝𝑡ℎ)

⊲ 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 can be represented in std::span
return empty if 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 is empty
□← getBoundingBox(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠)
𝑛𝑜𝑑𝑒 ←MakeNode(𝑛𝑢𝑙𝑙 , □)
if Size(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠) ≤ 1 then

returnMakeNode(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 , □)
else

𝑚𝑖𝑑 ← SelectMidHeuristic(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 , 𝑑𝑒𝑝𝑡ℎ)
⊲ This function also partition the 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠

left(𝑛𝑜𝑑𝑒)
← BvhTreeBuild(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 [0→𝑚𝑖𝑑], 𝑑𝑒𝑝𝑡ℎ + 1)

right(𝑛𝑜𝑑𝑒)
← BvhTreeBuild(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 [𝑚𝑖𝑑 + 1→ 𝑛], 𝑑𝑒𝑝𝑡ℎ + 1)

end if
end function

We want to parallelize this process in PRAM model, with or without linear
BVHs. Notice that this process is similar toQuickSort, where each recursion
involves an expensive heuristic function selecting pivot.

The original LBVH paper achieved this by constructing two working queues
on GPU, maintained by two separate kernel execution phases: split kernel
and compaction kernel. This way enables the use complex heuristic, e.g., SAH
heuristic, which balances the two sub-nodes by maximizing a parameter re-
lated to their surface areas. However in our fast-construction approach, this
is not feasible since the tree structure is pre-determined.

This fast-construction approach exploits the property of binary radix tree,
which accepts an ordered array and produce a balanced binary tree. A crucial
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(a) Binary Radix Tree. (b) Tree structure with range.

Figure 3: A demonstration of binary radix tree. Figure adopted from the
original paper[5].

property of which is its construction can be fully parallelized. We give a brief
introduction to binary radix tree here.

The tree structure is demonstrated in fig. 3. By viewing all values on the
leaves in their binary form, we define𝛿 (𝑖, 𝑗) on this arraywhich is the longest
common prefix between keys 𝑘𝑖 and 𝑘 𝑗 . This implies that ∀𝑖′, 𝑗 ′ ∈ [𝑖, 𝑗],
𝛿 (𝑖′, 𝑗 ′) ≥ 𝛿 (𝑖, 𝑗). Nodes are separated into 𝑛 − 1 internal nodes 𝐼 and 𝑛 leaves
𝐿, 𝐼 , 𝐿 are sets.

Let’s consider a node 𝐼 𝑗 in 𝐼 to have three properties, a range [𝑖, 𝑗], a split
position 𝛾 and a value 𝛿 (𝑖, 𝑗). The two children must have ranges that are
[𝑖, 𝛾], [𝛾 + 1, 𝑗]. Then, how to choose the split position 𝛾 ∈ [𝑖, 𝑗 − 1]? We
choose the position by the first bit following 𝛿 (𝑖, 𝑗). For 𝑘𝛾 , 𝑘𝛾+1 this bit are
0, 1 respectively. Some properties appear,

1. The index of internal node 𝑖 is some other’s split position 𝛾 or 𝛾 + 1.
2. Each internal node can independently decides their direction of cov-

erage because of 𝛿 (𝛾,𝛾 + 1) (see fig. 3).
3. Each internal node can independently decides their coverage because

they cannot exceed their parents’ 𝛿 (𝑖, 𝑗).
4. Because 𝛿 (𝑖, 𝑘) is monotonically decreasing on 𝑘 , we can dichotomy 𝑘

to get 𝛾 .
5. Till now, all properties of a node can be found in parallel with𝑂 (log𝑛)

time and work.

For PRAM analysis, its trivial that construction takes 𝑂 (𝑛 log𝑛) work and
𝑂 (log𝑛) time.

The only thing last is how to construct the sorted array. Using space-filling
curve, as you can see from fig. 4, any partition on the continuous curve will
result in two almost non-overlap spaces. Then we assign a morton-code
to each triangles (primitives) and sort them using radix sort, producing the
input that can be feed to binary radix tree.
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Figure 4: Morton code for LBVH.

3.3 Pre-partition

As we’ve mentioned before, the tree structure is pre-determined by keys 𝑘 𝑗 ,
leaving us no area to use heuristics. And unlike the traditional algorithm 2,
its hard for us to perform early termination in tree construction, i.e., termi-
nate when 𝑑𝑒𝑝𝑡ℎ is too large or when Size(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠) is small enough. This
motivates us to pre-partition the triangles using numerous of techniques,
grouping them into 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 and implement Intersect on them.

Actually, this idea comes from streaming BVH [2], which is to load triangles
on-the-fly when intersecting. Triangles are better packed into packs which
have a size of a physical page, so that we can maintain these pages with a
LRU cache. Further ideas will be discussed in later section. However, leaving
page-sized triangles on the BVH leaves will result in poor performance since
the granularity is too large. BVHs work fine when the number of elements
on their leaves is low. Results will yet be presented later.

There are mainly three ways to pack triangles,

1. Using yet another BVH to partition.
2. Using morton-code to partition.
3. Using graph-partition (METIS library) on the dual graph of triangle

mesh.

I’ll test them later.
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4 Result

The code is published in kririae/envoy. It is implemented in C++ and uses
xmake-io/xmake as my build system to handle all the dependencies. Here is
my testing platform,

Name Value
Kernel 6.0.5-x64v2-xanmod1-1
CPU AMD Ryzen 9 5900X (24) @ 3.700GHz

Core Frequency 3.700 GHz
Hyper-threading ON

Memory 3200 MHz, 32G
Compiler gcc (GCC) 12.2.0

Compile Options -std=c++20 -O3 -g

As an introduction, we test the performance of the parallel building process
with different number of cores, with different models. The test is done with
taskset since TBB do not conveniently support specifying the number of
threads. See the result at table table 2. Note that the performance index is
MOPs, based on the number of primitives it is processing.

t dragon sphere dambreak0 bun_zipper
0 2.73 3.70 3.26 4.21
1 3.81 4.94 4.51 5.78
2 4.21 4.85 5.15 6.60
3 4.35 4.96 5.70 7.07
4 4.52 5.53 5.82 7.50
5 4.52 6.10 5.97 7.53
6 4.49 4.91 5.92 6.40
7 4.87 5.38 5.84 6.13
8 4.86 5.37 5.68 5.91
9 4.83 5.52 5.96 7.16
10 4.85 5.53 4.93 6.99
11 4.92 5.18 5.77 6.80

Table 2: The build performance on different meshes

Note that the algorithm is not that scalable, maybe its because of the sort
algorithm I used and the number of threads of tbb cannot be readily con-
trolled by taskset. Although I also implemented it with OpenMP backend,
the parallel_sort that I used is based on tbb. I also give the plot here in
section 4.

Here’s the performance on four threads comparing to the original BvhBuildTree
version. See table 3. The performance boost is considerable.

There is one more experiment that worth doing here, the intersection perfor-
mance. I’ve mentioned that using this method, we lack the ability to manu-
ally control the tree structure.

First, it worth mentioning here that the tree traversal optimization is hard.
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bun_zipper

dragon sphere dambreak0 bun_zipper
serial 0.90 1.24 1.10 1.13
radix 4.62 5.83 5.98 7.51
relative 5.16x 4.70x 5.41x 6.64x

Table 3: The performance of serial BVH build and our implementation.

Although there is some methods like [1] that enables fast tree-traversal, I
do not have enough time to implement. So I choose the similar naive tree-
traversal presented in algorithm 1 on a thread-local stack. One great metrics
to measure tree quality is the number of triangles intersected. Implemen-
tation details are presented in src/stats.cpp for metrics, which utilized
Boost.Accumulators.

Let’s first test the intersection performance on pure triangle intersections.
The test result is simple, but due to the limit of xtensor-stack/xsimd,
which do not even provide a scalar backend as a fallback for now (9.0.1),
which, I previously thought, will be presented in every well-designed SIMD
library (It do provide a generic backend, but it cannot compile, because it is
not fully implemented). So I can only compare the performance on SSE and
AVX, which have a width corresponding to 4 and 8. For AVX, the intersec-
tion performance is approximately 704.28 × 106 triangles per second. While
SSE can achieve 431.70 × 106 triangles per second. (on a single core).

Then let’s demonstrate the intersection time per traversal in these two tree
building mechanisms. On a basic tree with SAH, 106 ray queries finished in
435ms, resulting in approximately 18 ray-triangle intersections per query.
For radix BVH, queries finished in 516ms, the overhead is less than 20%,
while it takes approximately 32 ray-triangle intersections per query. Cur-
rently, the two different methods uses BVH as their pre-partition method.
We add the result of using Z-Order Curve to pre-partition triangles in ta-
ble 4.
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build method intersections per ray time
BVH+SAH BVH 18 435ms
BVH+RADIX BVH 32 516ms
Z-Curve+SAH BVH 113 664ms
Z-Curve+RADIX BVH 128 864ms

Table 4: Intersection performance with different building mechanisms (on
sphere.ply, with 106 ray queries).

Although I did not present the result comparing to Embree
[11] here, Embree’s performance is no feasible for solely a
course project to achieve. I’ll implement those efficient al-
gorithms later.

5 Further work (on engineering)

Although this course project finishes here, there is a lot to progress. For
example, following this work [5], there is [6, 12] that enables much more
efficient BVH to build with triangle split, and [1] that boosts the performance
of BVH traversal.

There are also some existing efficient BVH implementations on GitHub, for
example, brandonpelfrey/Fast-BVH, madmann91/bvh. These aremuchmore
efficient than my implementation. Before I move on to more advanced ar-
chitectures, these optimizations must be done in advance.

I mentioned a prospect in my previous proposal. Three parts are crucial
and general in a complete renderer, whether online or offline. Let’s con-
sider that we are to render scenes that cannot be stored inside of a PC’s
RAM [2]. They can have so many lights that standard sampling techniques
(UniformSampleOneLight or UniformSampleAllLights) cannot handle.
They can have scene geometries of more than 100 GB. We would want to
render in real-time in a scene like this. These scenes are actually com-
mon in games or movies, as mentioned in [2]. Three Treasures ofModern
Renderers are efficient multi-platform and heterogeneous math library (or
compiler)[9, 4], general importance sampler[8], streaming BVHs with LoD[2].
Using these techniques, the importance sampler can handle many lights, ef-
fectively selecting the lights that contribute to this scene. With an appropri-
ate math library (or compiler) design, in extreme cases, a renderer written in
Taichi [3] can achieve heterogeneous computing for free. Streaming BVHs
also requires no modification to the original renderer. LoD is necessary for
large scenes. Consider a scenario where we can see the whole city. We don’t
expect to load the whole scene into memory, taking up a lot of memory
bandwidth. These are what I’m going to learn, research and implement in
the future.
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